skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barringer, Zachary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Defects in strongly correlated materials such as V 2 O 3 play influential roles on their electrical properties. Understanding the defects' structure is of paramount importance. In this project, we investigate defect structures in V 2 O 3 grown via a flux method. We use AFM to see surface features in several large flake-like particles that exhibit characteristics of spiral growth. We also use Bragg coherent diffractive imaging (BCDI) to probe in 3 dimensions a smaller particle without flake-like morphology and note an absence of the pure screw dislocation characteristic of spiral growth. We identified and measured several defects by comparing the observed local displacement of the crystal, measured via BCDI to well-known models of the displacement around defects in the crystal. We identified two partial dislocations in the crystal. We discuss how defects of different types influence the morphology of V 2 O 3 crystals grown via a flux method. 
    more » « less